

The Curious Rise of Wind in Texas

Ross Baldick,

Department of Electrical and Computer Engineering, University of Texas at Austin.

Presented at the 10th International Conference on the European Energy Market, May 27—31, 2013, Stockholm, Sweden.

Outline

- Electricity and wind in the European Union versus the USA.
- Focus on Denmark, Germany, and Sweden.
- The curious case of Texas and ERCOT.
- Implications for stochasticity and risk analysis.
- Conclusion.

- Total EU installed power generation capacity approximately 932 GW (EWEA 2013),
- Total EU installed wind power generation capacity approximately 106 GW, 11.4% (EWEA 2013),
- EU wind energy production as fraction of electric energy consumption approximately 7% (EWEA 2013).

- Total USA installed power generation capacity, approximately 1,050 GW (USEIA 2013a),
- Total USA installed wind power generation capacity approximately 60 GW,
 5.7% (USEIA 2013c),
- USA wind energy production as fraction of electric energy consumption approximately
 3.2% (USEIA 2013a).

European Union versus USA

- Greater penetration of wind by capacity and energy in EU is unsurprising given:
 - ☐ Higher fossil fuel energy costs in Europe,
 - Acceptance of need to mitigate greenhouse emissions because of climate change,
 - □ Encouragement of clean technology sector,
 - □ Significant amount of flexible hydroelectric and pumped storage hydroelectric resources.
- EU overall slightly behind 2012 target penetrations in "National Renewable Energy Action Plans" (EWEA 2013).

Several EU countries, particularly Denmark, Portugal, Spain, Ireland, and Germany, have been prominent in wind integration.

- Denmark (EWEA 2013, USEIA 2013b):
 - □ 4.2 GW wind capacity, out of approximately 13.7 GW total capacity, 30%,
 - □ annual wind energy production as a fraction of electric energy consumption, **27.1%**, highest in EU,
- Germany (EWEA 2013, USEIA 2013b):
 - □31.3 GW wind capacity, out of approximately 153 GW total capacity, 20%,
 - □ annual wind energy production as a fraction of electric energy consumption, 10.8%.

- Sweden (EWEA 2013, USEIA 2013b):
 - 3.7 GW wind capacity, out of approximately
 36.5 GW total capacity, 10%,
 - □ annual wind energy production as a fraction of electric energy consumption, 5%.

- But Danish statistics should not be taken as "standalone" values:
 - relative capacity of Denmark system, and
 - □ integration into EU and Norway.
- Wind energy production in Denmark and Germany as fraction of total electric energy consumption in Denmark and Germany is around 11% (USEIA 2013b):
 - Only slightly more than Germany alone.

- Wind energy in Denmark, Germany, and Sweden as a fraction of total electric energy consumption in Denmark, Germany, and Sweden is around 9% (USEIA 2013b):
 - □ Somewhat more than EU average, but
 - □ Less than Germany alone.

- In contrast to Europe, Texas has:
 - □ Low fossil energy costs, low taxes on fossil fuels,
 - □ Extreme skepticism amongst elected officials about climate change: "I do believe that the issue of global warming has been politicized...I think there are a substantial number of scientists who have manipulated data so that they will have dollars rolling into their projects," Texas Governor and one-time presidential hopeful Rick Perry,
 - □ Traditional emphasis on fossil fuel sector,
 - □ Very little hydro and no pumped storage.

Expect lack of enthusiasm for renewables!

Santa Rita No. 1: first proven oil in Texas (on University of Texas land; rig now on Austin campus).

- Yet, Texas has, by far, the most wind capacity and highest wind energy production in the USA!
- Most of Texas is covered by the Electric Reliability Council of Texas (ERCOT).

ERCOT

- One of five main synchronous interconnections in North America,
- The smallest of the three synchronous interconnections in USA,
- Covers most of the area and accounts for most of the electric consumption in Texas,
- ERCOT independent system operator (ISO) operates market and coordinates operation of transmission.

- ERCOT (Potomac 2012; ERCOT 2013):
 - □ Total installed power generation capacity around 85GW; Peak demand approximately 68GW,
 - □ Total installed wind power generation capacity over 10 GW, 13%, (compares to 11.4% in EU, 30% in Denmark, 20% in Germany, and 10% in Sweden),
 - Wind energy production as a fraction of electric energy consumption around 9.2%, (compares to 7% in EU, 27.1% in Denmark, 10.8% in Germany, and 5% in Sweden).

Wind in Denmark has analogies with wind in West Zone of ERCOT.

West zone ERCOT

- □ Total installed power generation capacity around 12 GW, (compares to 14 GW in Denmark),
- □ Total installed wind power generation capacity around 9 GW, 75%, (compares to 4GW and 30% in Denmark),
- □ Annual wind energy production as a fraction of electric energy consumption is more than
 85%, (compares to 27.1% in Denmark),
- Monthly wind energy production above 100% in some months.

Wind generation capacity in Texas (GW, end of year)

Source: USEIA 2013c.

- Huge growth in wind in Texas despite lack of obvious motivations in terms of:
 - energy prices,
 - □ climate change policy directives,
 - clean technology industry development (except in Austin).
- Yet, Texas state legislature has mandated renewable energy requirements:
 - So much wind has been built that state mandates are no longer binding!
 - □ Texas wind capacity exceeds 2025 target!

- Drivers of renewable growth in ERCOT:
 - □ Federal subsidies around \$30/MWh,
 - □ Robust wholesale market, operating since 1996, retail open access since 2002,
 - New generation entry facilitated by uniform interconnection agreement mediated by ERCOT ISO,
 - Good wind resources in West (and along Gulf coast),
 - □ State level desires to foster rural/West economic development,

- Drivers of renewable growth in ERCOT:
 - □ Landowners willing to sign wind leases,
 - □ Little not-in-my-backyard opposition to turbines and transmission,
 - □ Transmission in West Texas traditionally constrained in import direction,
 - □ Transmission and ancillary services costs socialized.
- Greenhouse issues not typically articulated in public policy about wind in Texas!

- Initial development 1999 through circa 2007:
 - □ Existing bulk transmission system allowed for considerable West Zone wind with only modest local transmission upgrades, since system was built for *importing* energy *into* West Zone,
 - Wind ramping events such as wind die-offs involved changes in wind production smaller than the spinning reserves carried for the largest thermal generation (2.3 GW),
 - □ Thermal generation portfolio relatively unchanged, despite changes to operations.

- Subsequent and future development:
 - □ Transmission:
 - Major upgrades to bulk transmission necessary for significant further integration of wind ("CREZ" transmission upgrades, around \$7 billion),
 - ☐ Effects on wholesale markets:
 - US Federal "production tax credit" (PTC) subsidies make effective marginal production cost negative,
 - Electricity prices negative in West zone when transmission constraints are binding, occasionally negative throughout ERCOT,
 - Reduce profitability of investment, particularly baseload investment.

- Subsequent development:
 - □ Wind die-offs and variability will likely increase the need for carrying ancillary services:
 - Large die-offs over 30 minutes now larger than spinning reserves carried,
 - Possible need for additional quantities and classes of ancillary services compared to those needed in context of mostly dispatchable, thermal system.

- Subsequent development:
 - West Texas wind anti-correlated with demand,
 - Peak wind production coincides with minimum of "net load" (load minus wind):
 - Completion of CREZ transmission upgrades circa 2014 will increase incidence of negative prices throughout ERCOT,
 - Further affect operations and baseload investment.
 - More recent coastal wind development has much more favorable correlation with demand:
 - But environmental concerns regarding birds and bats,
 - Coastal property more valuable.

- Subsequent development:
 - Because net load with high wind is "peakier," expect portfolio to adapt towards less baseload and more peakers:
 - Expect tight capacity under peak demand conditions in Summer 2013 and 2014.
- ERCOT system and market will need to adapt to various challenges of nature of large scale wind integration:
 - ☐ Stochasticity and risk issues.

- Explicit subsidies and mandates are major drivers of renewable investment:
 - □ Each time US Federal PTC has "expired," renewable growth has fallen to close to zero.
 - Regulatory fiat drives renewable investment and is huge risk for investment in nuclear/fossil generation and new technology development.
 - □ Concern about policy uncertainties, particularly where transmission infrastructure investment is publicly funded.

- Intermittent renewables have variability and uncertainty on timescales not matched by traditional tools used in the electricity industry:
 - □ Forecasting of intermittent production,
 - Operations, including commitment of residual thermal system to meet net load and effects on: needs for, types, and cost of ancillary services,
 - □ Valuation of storage and demand side to compensate for variability and uncertainty.

- Intermittent renewables have locational and temporal characteristics that shift focus of analysis from particular high demand conditions to consideration of locational and temporal distribution of wind and net load:
 - Planning, including new additions of longdistance transmission to access remote wind, must adapt to these changes.

- Long-term adaptation of thermal system portfolio to net load requires less baseload and more agile peaking generation:
 - □ Lower capacity factors,
 - More agility to cope with wind die-offs,
 - □ Compensation for reduced inertia of system,
 - ☐ Greater variation between on- to off-peak wholesale prices.
- Shift to more explicit representation of stochasticity and risk.

Conclusion

- Texas has experienced huge growth in wind generation almost despite a lack of environmental motivations for renewable integration.
- Initial very favorable circumstances for integration of wind have now given way to relatively higher integration costs for transmission and ancillary services.
- Many issues related to stochasticity and risk need new analysis and tools.

European Wind Energy Association (EWEA) 2013, "Wind in power 2012: European statistics," February 2013, Available from:

http://www.ewea.org/fileadmin/files/library/publications/statistics/Wind_in_power_annual_statistics_2012.pdf, Accessed May 20, 2013.

- US Energy Information Administration (USEIA) 2013a, "Electric Power Annual 2011," January 2013, Available from: http://www.eia.gov/electricity/annual/, Accessed May 20, 2013.
- USEIA 2013b, "International Energy Statistics," Available from: http://www.eia.gov/cfapps/ipdbproject/iedindex3.cfm?tid=2&pid=2&aid=7&cid=CG1,&syid=2006&eyid=2010&unit=MK, Accessed May 20, 2013.

- USEIA 2013c, "Wind Powering America," Available from:
 - http://www.windpoweringamerica.gov/wind_i nstalled_capacity.asp, Accessed May 20, 2013.
- Potomac Economics, 2012, "2011 State of the Market Report for the ERCOT Wholesale Electricity Markets," Available from:

http://www.potomaceconomics.com/markets_monitored/ERCOT, Accessed May 20, 2013.

ERCOT 2013, "ERCOT—Challenges and Opportunities," March 7, 2013, Available from <u>www.ercot.com</u>, Accessed May 20, 2013.